Binghamton CS-220

University Spring 2016

C Function Invocation

The C Programming Language, Chapter 4

Binghamton CS-220

University Spring 2016

Function Terminology

int main(int argc, char **argv) { _— m
int a=3; /////////J]

int b=4; //

int C =myfn(a,b+2/)'
return O;

} Return
Address

int myfn(int x, inty) { return x*x + y*y; }

Binghamton CS-220

University Spring 2016

Terminology Definitions

* Caller: Higher level function that invokes a lower level function

* Callee: Lower level function that has been invoked by a higher level
function

* Note: A single function can be both a callee and a caller
* Invocation: The indication in the caller that it want’s to use the callee
* Instance: One specific execution of the callee
* Return Value: The value specified on the “return” statement of the callee

* Return Address: The instruction in the caller that should be executed
when the instance of the callee is complete

Binghamton CS-220

University Spring 2016

Instruction processing...

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]
int main(int argc, char **argv) {

a=3; .
b=4; int a=3;
[Main (caller) invokes myfn(callee)] int b=4;
x=a, y=b+2; int ¢ = myfn(a,b+2);
) y O;
[myfn (callee) startup] | return
X*X + y*y

[myfn (callee) return to main]
Imain (caller) return from myfn]
c = [return value from myfn]
[main (callee) return to OS]

int myfn(int x, int y) { return x*x + y*y; }

Binghamton CS-220

University Spring 2016

Function Invocation Detalls
a

* Evaluate arguments b
[OS(caller) invokes Main (callee)] « Copy argument values to parameters

[Main (callee) startup)] * Preserve Caller’s state
e Save return address y

a=3;
b=4;

[Main (caller) invokes myfn(callee)] — . Preserve caller’s state
X=a, y=b 42 e Create/initialize local variables

» Establish argument accessibility

[myfn (callee) startup]
X*X + y*y

‘myfn (callee) return to main]
‘main (caller) return from myfn]
c = [return value from myfn]
[main (callee) return to OS]

Binghamton CS-220

University Spring 2016

Caller invoke...

int main(int argc, char **argv) { Save Caller’s State
int a=3: Eval. Args... myfn(3,6)]
int b=4; /
int c|=|myfn(a,b+2);
return O; Copy args to parms...

} Xx=3,y=6

int myfn(int X, inty) { return x*x + y*y; } [yuusuy ¥

Binghamton CS-220

University Spring 2016

Callee startup...
int main(int argc, char **argv) {

Int a=3;
int b=4;
iInt ¢ = mytn(a,b); Save Caller’s State
return O;

Establish args... x=3, y=6]

Create Local Variables
int myfn(int x, int y) { return x*x + y*y; }

Binghamton CS-220

University Spring 2016

Function Return Detalls

. Evaluate return expression\
[OS(caller) invokes Main (callee)] * Savereturnvalue
[Main (callee) startup)] P Free local variables
1=3- e Restore caller’s state
b— 4’. //\' Branch to return address y

[Main (caller) invokes myfn(c

X=a, y=b+2;
[myfn (callee) startup « Restore caller’s state
X*X + y*y / * Free space for arguments/return address
‘myfn (callee) return to main] « Use returned value

‘main (caller) return from myfn]
c = [return value from myfn]
[main (callee) return to OS]

Binghamton CS-220

University Spring 2016

Callee return...

int main(int argc, char **argv) { Eval Return
3*3+6*6

?nt a=3; Save return val : 45 }
int b=4;

int ¢ = myfn(a,b); Free Local Variables
return 0; ‘

} 4 Restore Caller’s

State

<

int myfn(int x, inty) { return x*x + y*

-
\V/

Branch to

Return Address

Binghamton CS-220

University Spring 2016

Caller on return...

int main(int argc, char **argv) {

Int a= 3; Free Args & return address
int b=4;
int ¢ =_myfn(a,b);
return O;
} Restore Caller’s State

int myfn(int x, int return X*x + y*v:
vine | A veyih Use return value: 46}

Binghamton CS-220

University Spring 2016

“Call by Value”

* Convention that says callee works on a copy of the arguments
* Protects callers variables from unexpected “side-effects”

int x=1,y=2,z=3;

int myfunc(int a; int b) { a=2*a; return a*b; }

x=myfunc(y,z);

* Prevents functions from modifying arguments

veidinciement(int) tacas
i ,

Binghamton CS-220

University Spring 2016

Update Argument work-arounds

e Use the return value

int increment(int a) { return a+1; }
X = increment(x);

* Pass a pointer to the value

void increment(int *a) { (*fa) = (*a) + 1; }
increment(&x);

Binghamton CS-220

University Spring 2016

Function Variable Scope

* Variables are visible only inside the block in which they are
declared
* Blockis delimited by curly braces...{ }
 Variables typically declared inside a function definition
* Notvisible to called functions! (Different from other languages)

(“_>J)

* That way, “x” in this function is always different from “x” in the
calling function!

* Function variables disappear when the block ends

Binghamton CS-220

University Spring 2016

Example Scope Hole

{inti: intj=7; Scope of outside j

for (i=0; i<3;i++) {
int j=i+1;
printf(“j=%d\n",j);

5
printf("j=%d\n");

5

Scope of inside j
(Hole for outside j)

=1
]=2
]=3
1=7

14

Binghamton CS-220

University Spring 2016

Function Binding in C

* Binding: How much do I need to know in order to code a function
* Parameter Definitions
* Return Value Type
* Functionality
* Environment (global variables, lower level function availability, etc.)
* Caller’s environment (variable names, etc.)
* State (status of 10 devices, value of caller’s variables, etc.)

* High Binding => Low Portability / Re-Use
* Function Variables in C => Lower Binding

Binghamton CS-220

University Spring 2016

Variable Life

* Global Variables (declared outside function):
* allocated/initialized before “main” is invoked
* freed after “main” returns

e LLocal Variables:
e allocated/initialized when function is invoked
* freed after function returns

Binghamton CS-220

University Spring 2016

The “Disappearing” return value problem

char * myfn(int x) {
char val[256]; int j;
for(j=0;j<x && j<256; j++) val[jl="X;
val[j]=0; return val;

}

int main() {
char *p=myfn(121);
printf("121 xs are: %s\n”,p); // Problem here!
return O;

Binghamton CS-220

University Spring 2016

return value fix

char val[256]; // “"Global” variable
char * myfn(int x) {
Int J;
for(j=0;j<x && j<256; j++) val[j]="x;
val[j]=0; return val;
}
int main() {
char *p=myfn(121); // p alias for “val”
printf(“121 xs are: %s\n”,p); // Works, but dangerous!
return O;

Binghamton CS-220

University Spring 2016

return value fix 2

char * myfn(int x) {
int J;
char *val=(char *)malloc(x+1); // get memory from OS
for(j=0;j<x; j++) val[jl="x’;
val[j]=0; return val;

}

int main() {
char *p=myfn(121);
printf(“121 xs are: %s\n”,p);
free(p); // return memory to OS
return O;

