
Binghamton

University

CS-220

Spring 2016

C Function Invocation
The C Programming Language, Chapter 4

Binghamton

University

CS-220

Spring 2016

Function Terminology

Callee

Caller

Invocation

Return
Address

Return
Value

int main(int argc, char **argv) {

int a=3;

int b=4;

int c = myfn(a,b+2);

return 0;

}

int myfn(int x, int y) { return x*x + y*y; }

Binghamton

University

CS-220

Spring 2016

Terminology Definitions

• Caller: Higher level function that invokes a lower level function

• Callee: Lower level function that has been invoked by a higher level
function

• Note: A single function can be both a callee and a caller

• Invocation: The indication in the caller that it want’s to use the callee

• Instance: One specific execution of the callee

• Return Value: The value specified on the “return” statement of the callee

• Return Address: The instruction in the caller that should be executed
when the instance of the callee is complete

Binghamton

University

CS-220

Spring 2016

Instruction processing…

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]

a=3;

b=4;

[Main (caller) invokes myfn(callee)]

x=a, y=b+2;

[myfn (callee) startup]

x*x + y*y

[myfn (callee) return to main]

[main (caller) return from myfn]

c = [return value from myfn]

[main (callee) return to OS]

int main(int argc, char **argv) {

int a=3;

int b=4;

int c = myfn(a,b+2);

return 0;

}

int myfn(int x, int y) { return x*x + y*y; }

Binghamton

University

CS-220

Spring 2016

Function Invocation Details

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]

a=3;

b=4;

[Main (caller) invokes myfn(callee)]

x=a, y=b+2;

[myfn (callee) startup]

x*x + y*y

[myfn (callee) return to main]

[main (caller) return from myfn]

c = [return value from myfn]

[main (callee) return to OS]

• Evaluate arguments
• Copy argument values to parameters
• Preserve Caller’s state
• Save return address

• Preserve caller’s state
• Create/initialize local variables
• Establish argument accessibility

Binghamton

University

CS-220

Spring 2016

Save Caller’s Stateint main(int argc, char **argv) {

int a=3;

int b=4;

int c = myfn(a,b+2);

return 0;

}

int myfn(int x, int y) { return x*x + y*y; }

Caller invoke…

Copy args to parms…
x=3, y=6

Eval. Args… myfn(3,6)

Save Return Address

Binghamton

University

CS-220

Spring 2016

Save Caller’s State

int main(int argc, char **argv) {

int a=3;

int b=4;

int c = myfn(a,b);

return 0;

}

int myfn(int x, int y) { return x*x + y*y; }

Callee startup…

Create Local Variables

Establish args… x=3, y=6

Binghamton

University

CS-220

Spring 2016

Function Return Details

[OS(caller) invokes Main (callee)]

[Main (callee) startup)]

a=3;

b=4;

[Main (caller) invokes myfn(callee)]

x=a, y=b+2;

[myfn (callee) startup]

x*x + y*y

[myfn (callee) return to main]

[main (caller) return from myfn]

c = [return value from myfn]

[main (callee) return to OS]

• Evaluate return expression
• Save return value
• Free local variables
• Restore caller’s state
• Branch to return address

• Restore caller’s state
• Free space for arguments/return address
• Use returned value

Binghamton

University

CS-220

Spring 2016

Eval Return
3*3+6*6

int main(int argc, char **argv) {

int a=3;

int b=4;

int c = myfn(a,b);

return 0;

}

int myfn(int x, int y) { return x*x + y*y; }

Callee return…

Free Local Variables

Save return val : 45

Branch to
Return Address

Restore Caller’s
State

Binghamton

University

CS-220

Spring 2016

int main(int argc, char **argv) {

int a=3;

int b=4;

int c = myfn(a,b);

return 0;

}

int myfn(int x, int y) { return x*x + y*y; }

Caller on return…

Free Args & return address

Use return value: 46

Restore Caller’s State

Binghamton

University

CS-220

Spring 2016

“Call by Value”

• Convention that says callee works on a copy of the arguments

• Protects callers variables from unexpected “side-effects”
int x=1,y=2,z=3;

int myfunc(int a; int b) { a=2*a; return a*b; }

x=myfunc(y,z);

• Prevents functions from modifying arguments
void increment(int a) { a=a+1; }

increment(x);

Binghamton

University

CS-220

Spring 2016

Update Argument work-arounds

• Use the return value

int increment(int a) { return a+1; }

x = increment(x);

• Pass a pointer to the value

void increment(int *a) { (*a) = (*a) + 1; }

increment(&x);

Binghamton

University

CS-220

Spring 2016

Function Variable Scope

• Variables are visible only inside the block in which they are
declared

• Block is delimited by curly braces… { }

• Variables typically declared inside a function definition

• Not visible to called functions! (Different from other languages)

• That way, “x” in this function is always different from “x” in the
calling function!

• Function variables disappear when the block ends

Binghamton

University

CS-220

Spring 2016

Example Scope Hole

{ int i; int j=7;

for (i=0; i<3; i++) {

int j=i+1;

printf(“j=%d\n”,j);

}

printf(“j=%d\n”);

}

14

Scope of outside j

Scope of inside j
(Hole for outside j)

j=1
j=2
j=3
j=7

Binghamton

University

CS-220

Spring 2016

Function Binding in C

• Binding: How much do I need to know in order to code a function
• Parameter Definitions

• Return Value Type

• Functionality

• Environment (global variables, lower level function availability, etc.)

• Caller’s environment (variable names, etc.)

• State (status of IO devices, value of caller’s variables, etc.)

• High Binding => Low Portability / Re-Use

• Function Variables in C => Lower Binding

Binghamton

University

CS-220

Spring 2016

Variable Life

• Global Variables (declared outside function):
• allocated/initialized before “main” is invoked

• freed after “main” returns

• Local Variables:
• allocated/initialized when function is invoked

• freed after function returns

Binghamton

University

CS-220

Spring 2016

The “Disappearing” return value problem

char * myfn(int x) {

char val[256]; int j;

for(j=0;j<x && j<256; j++) val[j]=‘x’;

val[j]=0; return val;

}

int main() {

char *p=myfn(121);

printf(“121 xs are: %s\n”,p); // Problem here!

return 0;

}

Binghamton

University

CS-220

Spring 2016

return value fix
char val[256]; // “Global” variable

char * myfn(int x) {

int j;

for(j=0;j<x && j<256; j++) val[j]=‘x’;

val[j]=0; return val;

}

int main() {

char *p=myfn(121); // p alias for “val”

printf(“121 xs are: %s\n”,p); // Works, but dangerous!

return 0;

}

Binghamton

University

CS-220

Spring 2016

return value fix 2
char * myfn(int x) {

int j;
char *val=(char *)malloc(x+1); // get memory from OS

for(j=0;j<x; j++) val[j]=‘x’;
val[j]=0; return val;

}
int main() {

char *p=myfn(121);

printf(“121 xs are: %s\n”,p);
free(p); // return memory to OS

return 0;
}

